
Introduction to Minkowski's Conjecture

O�r David

1 Motivation

We begin with probably one of the most well known theorems in mathematics.

Theorem 1.1. The ring Z is Euclidean : For any a, b ∈ Z with b 6= 0, there are q, r ∈ Z such that
a = bq + r and |r| < |b|.

Proof. The standard proof usually uses some induction argument. We shall use a more geometric
approach.

Let a, b ∈ Z with b 6= 0. If ab ∈ Q is actually in Z, then we are done by taking q = a
b and r = 0.

Otherwise let q ∈ Z be the closest integer to a
b , so in particular we have that

∣∣q − a
b

∣∣ ≤ 1
2 . Letting

r = a− bq we obtain that

|r| = |a− bq| = |b|
∣∣∣a
b
− q
∣∣∣ = |b| |q̃ − q| ≤ |b| 1

2
< |b| ,

and we are done.

Figure 1.1: Every point q̃ ∈ Q has a point q ∈ Z with |q − q̃| ≤ 1
2

The only properties that we needed in the proof are:

1. Multiplicative: The norm |·| : R→ R≥0 is multiplicative.

2. Discrete: The image of the norm on Z is in Z≥0.

3. Small covering radius: For any q̃ ∈ Q (and even in R = Q) there exists q ∈ Z such that
|q − q̃| < 1.
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We can now generalize this to other integer rings. For example, for rings inside C we can use the
multiplicative norm N (a+ bi) = (a+ bi) (a− bi) = a2 + b2. If we started with quadratic rings, then
this is the algebraic norm, hence has integral values, so we only need to check the covering radius:

• Z [i] is Euclidean with covering radius is 1
2 .

• Z
[√

2i
]
is Euclidean with covering radius is 3

4 .

• Z
[√

3i
]
is not Euclidean with the norm N

(
a+ b

√
3i
)

= a2 + 3b2. The distance of the third

root of unity ω from Z
[√

3i
]
is exactly 1.

• Z [ω] = Z
[√

3i, ω
]
(added the problematic point) is Euclidean with the norm N (a+ bω) =

(a+ bω) (a+ bω̄) = a2 − ab+ b2 with covering radius 1√
3
< 1.

Figure 1.2: From left to right we have Z [i] , Z
[√

2i
]
, Z
[√

3i
]
and Z [ω].

Remark 1.2. If the covolume of the lattice is too big, then the covering radius > 1 and then the
Euclidean distance is not a Euclidean norm.

1.1 Totally real �elds

In the last examples we had a ring O inside a complex quadratic �eld K, namely K = Q
(√
−d
)
for

some d > 1 square free, which is then embedded as a lattice inside C. What happens if this is not
the case?

Let us consider the ring Z
[√

2
]
↪→ Q

(√
2
)
. We can think of it as embedded in Q

(√
2
)
≤ R

with the usual absolute value norm on R which is still multiplicative. Since Z
[√

2
]
is dense in R,

the covering radius is zero, however it also means that the image of the norm is not in Z (or even
discrete). In order to �x this we add another dimension and consider the following embedding:

ϕ : Q
(√

2
)
→ R× R

ϕ
(
a+ b

√
2
)

=
(
a+ b

√
2, a− b

√
2
)

=
(
a+ b

√
2, σ

(
a+ b

√
2
))

where σ is the nontrivial Galois conjugation on Q
(√

2
)
. It is well known that under this embedding

ϕ
(
Z
[√

2
])

is a lattice in R2.
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Figure 1.3: The lattice for Z
[√

2
]
.

Considering R×R as a ring with pointwise multiplication, we see that ϕ is a ring homomorphism.
It is now easy to check that the standard Euclidean distance on R2 will not de�ne a multiplicative
norm on Z

[√
2
]
, so instead we will use the multiplicative norm

N : R× R→ R≥0

N (x, y) = |xy| .

Note that for a + b
√

2 ∈ Z
[√

2
]
the norm is just N

(
ϕ
(
a+ b

√
2
))

=
∣∣(a+ b

√
2
)
σ
(
a+ b

√
2
)∣∣ =∣∣a2 − 2b2

∣∣ which is the algebraic norm (in absolute value), and in particular it has integer values.

To sum up, the norm N : Z
[√

2
]
→ R≥0 is multiplicative with values in the integers, and we

are left asking whether it has multiplicative covering radius < 1. This means that R2 is covered by
normalized hyperbolas centered on the lattice points as in the image below:

Figure 1.4: The �Multiplicative� ball around the origin in the lattice for Z
[√

2
]
.
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Generalizing this phenomenon, we begin with the de�nition of multiplicative covering radius.

De�nition 1.3. De�ne the multiplicative norm N : Rn → R≥0 by N (x1, ..., xn) =
∏
|xi|. For a set

Ω ⊆ Rn, we write L (Ω) = infω∈ΩN (Ω).
For a lattice L ≤ Rn we de�ne the norm cover to be Ncov (L) = supv∈Rn N (v − L).

In other words, if B(N) (r) = {x̄ ∈ Rn | N (x̄) < r} is the multiplicative �ball� of radius r, then
Rn is covered by the translations of the closure B(N) (Ncov (L)) centered around the lattice points

in L, namely Rn = L+B(N) (Ncov (L)).
Next we generalize the lattice construction to other totally real �eld extensions.

De�nition 1.4. Let K/Q be a totally real �eld and let σ1, ..., σn : K → R be its distinct n real
embeddings. De�ne ϕK : K → Rn to be the map ϕK (α) = (σ1 (α) , ..., σn (α)), and denote by
Ncov (K) := Ncov (ϕK (OK)).

Note that K ϕK→ Rn N→ R≥0 is just the standard algebraic norm |Norm (α)| = |
∏
σi (α)| (in

absolute value), so in particular it is multiplicative, and for α ∈ OK we have that Norm (α) ∈ Z.
These are two of the conditions that we need to show that OK is Euclidean. The last condition is
N (α−OK) < 1 for all α ∈ K, or in the lattice notation N (v − L) < 1 for all v ∈ QL. Thus we
obtain the following:

Corollary 1.5. The ring OK is Norm-Euclidean (i.e. Euclidean with the norm N as above) if
Ncov (K) < 1.

Remark 1.6. In the corollary above we don't have the �only if� part since Ncov (K) consider the
supremum over all points in Rn while in general we need only the points coming from K. In Corollary
1 and 2 in [3], it is shown that if Ncov (K) > 1, then there exists α ∈ K such that N (α−OK) > 1,
hence OK is not Norm-Euclidean. In addition, if Ncov (K) = 1 and [K : Q] ≥ 3 then similarly OK is
not Norm-Euclidean.

Remark 1.7. An integer ring can be Euclidean but not Norm-Euclidean, for example the integer ring
of Q

(√
69
)
(see [4]???).

Remark 1.8. The only quadratic Norm-Euclidean �elds are Q (
√
m) where

m ∈ {−11,−7,−3,−2,−1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73} .

Returning to the examples that we had in the previous section, while Z
[√
−1
]
and Z

[√
−2
]
are

norm-Euclidean (for the complex norm), Z
[√
−3
]
is not norm-Euclidean and the �reason� is that

the covolume became too large and therefore the covering radius became too large. In general, if
we �x the dimension d and some M > 0, then there are only �nitely many �elds such that the
corresponding lattice has covolume < M (the covolume is exactly the square root of the discriminant
of the �eld). Thus, we do not expect too many of them to have small multiplicative covering radius
(and hence norm-Euclidean). While this direction will probably fail, we can still ask whether after
normalization, the resulting lattice does have small multiplicative covering radius, and this question
leads to Minkowski's conjecture.
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2 The conjecture and �rst examples

Conjecture 2.1. (Minkowski) For any lattice L ≤ Rn we have that Ncov (L) ≤ covol(L)
2n .

Remark 2.2. For lattices coming from �eld extension as in the previous section, the conjecture implies

that Ncov (K) ≤
√
DK

2n where DK is the discriminant. In particular for K = Q
(√

2
)
, the discriminant

is 8 so the conjecture (which is a theorem in dimension 2) implies that Ncov
(
Q
(√

2
))
≤
√

8
4 < 1, so

that Z
[√

2
]
is Euclidean.

Remark 2.3. The conjecture actually asks to show that Ncov (L) = covol(L)
2n i� L = Zn (up to

normalization and a diagonal �ow). We will ignore this condition and denote by MINK the conjecture
stated above for unimodular lattices, namely Ncov (L) ≤ 1

2n .

The �rst step to attack this conjecture is to notice the following. Let L ≤ Rn be a lattice and
consider the function v 7→ N (v − L). This function is invariant under translation by L, so in order to
�nd its supremum, namely Ncov (L) = supN (v − L), it is enough to consider the supremum only on
a fundamental domain. More generally, a lattice L satis�es MINK if and only if it has a fundamental

domain inside the multiplicative ball B(N)
(

1
2n

)
=
{
x̄ ∈ Rn | N (x̄) = N (x̄− 0̄) ≤ 1

2n

}
.

Example 2.4. The simplest example of a lattice is Zn ≤ Rn. This lattice has fundamental domain
inside F =

[
− 1

2 ,
1
2

]n
and every point in this set satis�es

∏
|xi| ≤ 1

2n implying that Ncov (Zn) ≤ 1
2n .

Note also that N
((

1
2 , ...,

1
2

)
− Zn

)
= 1

2n , hence Ncov (Zn) = 1
2n .

Interestingly, between F =
[
− 1

2 ,
1
2

]n
andB(N)

(
1

2n

)
we have the closed Euclidean ballB(E)

(√
n

2

)
={

x̄ ∈ Rn | ‖x̄‖2 ≤
√
n

2

}
. Clearly F ⊆ B(E)

(√
n

2

)
, and on the other hand, if (x1, ..., xn) ∈ B(E)

(√
n

2

)
,

then using the standard inequality of arithmetic and geometric means we get that(∏
|xi|
)1/n

=

((∏
x2
i

)1/n
)1/2

≤
(∑

x2
i

n

)1/2

≤ 1

2
.

Figure 2.1: A fundamental domain of Z2 (the green square) is contained inside the ball of radius
√

2
2

(the red ball) which is contained inside the multiplicative ball |xy| ≤ 1
4 (the blue region).
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More generally we see that:

Lemma 2.5. If L has a fundamental domain in B(E)
(√

n
2

)
, then L satis�es MINK. In other words,

covering radius ≤
√
n

2 implies multiplicative covering radius ≤ 1
2n .

Example 2.6. Let U ≤ SLn (R) be the group of upper triangular with 1's on the diagonal and
K = SOn (R).

• For any u ∈ U the lattice L = uZn has a fundamental domain in F =
[
− 1

2 ,
1
2

]n
, hence as before

L satis�es MINK.

• Let k ∈ SOn (R). Then kL = kuZn has a fundamental domain in kF ⊆ kB(E)
(√

n
2

)
=

B(E)
(√

n
2

)
, hence it satis�es MINK.

What happens if L doesn't have covering radius≤
√
n

2 ? For example, think about Lε = spanZ
{

(ε, 0) ,
(
0, 1

ε

)}
for ε > 0 very small. In this case Lε has covering radius ∼ 1

2ε which is very big. Fortunately, we are
looking for the multiplicative covering radius, and not the standard covering radius. In particular,
the multiplicative covering radius is invariant under multiplication by elements from the positive
diagonal group A := {diag (et1 , ..., etn) |

∑
ti = 0}. Indeed, this follows from the fact that

N
(
diag

(
et1 , ..., etn

)
· (x1, ..., xn)

)
= N

((
et1x1, ..., e

tnxn
))

=
∏∣∣xieti∣∣ = e

∑
tiN (x̄) = N (x̄) .

The lattice above is just diag
(
ε, 1
ε

)
Z2, so it still satis�es MINK.

Figure 2.2: The blue points correspond to Z2 and the green diamonds to diag
(

2
5 ,

5
2

)
Z2. Flowing

along the diagonal group is the same as moving along hyperbolas.
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More generally we proved the following:

Lemma 2.7. For any lattice L ≤ Rn and a ∈ A we have Ncov (L) = Ncov (aL).

De�nition 2.8. A matrix g ∈ SLn (R) is called DOTU (Diagonal, Orthogonal, Triangular, Unimod-
ular integral) if it is in A · SOn (R) · U · SLn (Z).

Corollary 2.9 ([9]). For any DOTU matrix g ∈ SLn (R), the lattice gZn satis�es MINK.

To sum up the ideas so far, we have the following: Let x ∈ Xn be a unimodular lattice:

1. Show that Ax contains a �nice� lattice.

2. Show that every �nice� lattice has covering radius ≤
√
n

2 .

3. Show that covering radius ≤
√
n

2 implies multiplicative radius ≤ 1
2n .

We already know that (3) is always true. Up until now �nice� meant a lattice of the form kuZn with
k ∈ SOn (R) and u ∈ U . For these types of lattice we know that (2) is true as well, and we are left
to check if (1) is true.

Note �rst that by Iwasawa's decomposition SLn (R) = AUK which would complete the proof if
we instead had SLn (R) = AKU . In dimension 2 it is true that any lattice has the form akuZn.
To see this, recall that if we consider 2-dimensional lattices up to SO2 (R), then we can parametrize
them using the fundamental domain of the action of SL2 (Z) on the hyperbolic plane. Under this
presentation, the lattices of the form kuZ2 correspond to the segment

{
x+ i | |x| ≤ 1

2

}
, and its not

hard to check that any geodesic passes through this segment. Thus, every 2-dimensional lattice has
the form akuZ2.

Figure 2.3: The fundamental domain is the blue set (|x| ≤ 1
2 , y ≥ 0 and x2 + y2 ≥ 1). The red

segment correspond to lattices of the form kuZ2.

In general, it is known that in dimension n = 2, 3 every matrix in SLn (R) is DOTU (see [11, 12]).
On the other hand, for n big enough this stops being the case (see 3.7 and also [1], or at least try).
Thus we need to look for a better de�nition for �nice� lattices.
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3 The space of unimodular lattice and A-orbits

Before continuing, let us recall some of the de�nitions for unimodular lattice and their A-orbits.
Recall that the space of unimodular lattices can be parametrized byXn := SLn (R) /SLn (Z) under

the map gSLn (Z) 7→ gZn. We then have the map Ncov : Xn → R≥0, and Minkowski's conjecture
can be formulated by saying that Ncov is bounded from above by 1

2n . Moreover, the space Xn has
a natural left A-action on it, and we have already seen that Ncov is constant on A-orbits.

Under the topology of Xn inherited from SLn (R), two lattices are close if we can write them as
g1Zn, g2Zn with ‖g1 − g2‖∞ small, namely we can �nd bases for the two lattices which are close to
each other. While the map Ncov : Xn → R≥0 is not continuous, it is upper semicontinuous, so in
particular if xi → x∞, then lim

i→∞
Ncov (xi) ≤ Ncov (x).

Lemma 3.1. The map Ncov : Xn → R is upper semicontinuous.

Proof. Recall that for a lattice L ≤ Rn we have that L + B(N) (r) = Rn i� r ≥ Ncov (L), and
further L + B(N) (r) = Rn if r > Ncov (L). Fix some x ∈ Xn and let R > 0 be the covering

radius of x and r = Ncov (x). Since B(E) (2R) is a compact, for any 1 > ε > 0 the open cover

B(E) (2R) ⊆ Rn = x + B(N) (r + ε) has a �nite subcover B(E) (2R) ⊆
⋃nε

1

(
γ(i) +B(N) (r + ε)

)
where γ(i) ∈ x.

Given 1 > δ > 0, we can �nd a neighborhood Vε,δ of x, such that any y ∈ Vε,δ satis�es (1) y has
covering radius ≤ 2R and (2) for each i = 1, ..., nε the lattice y contains γ̃(i) with

∥∥γ̃(i) − γ(i)
∥∥ <

δ. Each such y has a fundamental domain inside B(E) (2R), so if we can show that B(E) (2R) ⊆⋃nε

1

(
γ̃(i) +B(N) (r + 2ε)

)
then Ncov (y) ≤ r + 2ε. Proving this for any ε > 0 will complete the

proof.

Let v ∈ B(E) (2R) and i ∈ {1, ..., nε} such that N
(
v − γ(i)

)
≤ r + ε. Then

N
(
γ̃(i) − v

)
=
∏
j

∣∣∣γ̃(i)
j − vj

∣∣∣ ≤∏
j

(∣∣∣γ̃(i)
j − γ

(i)
j

∣∣∣+
∣∣∣γ(i)
j − vj

∣∣∣) ≤ N (γ(i) − v
)

+δ
(
‖v‖+

∥∥∥γ(i)
∥∥∥+ 1

)2n

.

Taking δ = ε
2 mini

(
‖v‖+

∥∥γ(i)
∥∥+ 1

)−2n

, we get that N
(
γ̃(i) − v

)
< r + 2ε. As v was arbitrary

in B(E) (2R) we conclude that B(E) (2R) ⊆
⋃nε

1

(
γ̃(i) +B(N) (r + 2ε)

)
which is what we wanted to

show.

This upper semicontinuity let us improve the process mentioned in the previous section - instead
of �nding a �nice� lattice in Ax, it is enough to �nd one in Ax.

Corollary 3.2. Let x ∈ Xn such that Ax contains a lattice which satis�es MINK. Then x satis�es
MINK. In particular almost every x ∈ Xn satis�es MINK.

Proof. If y ∈ Ax, then we can �nd ai ∈ A such that aix→ y. By the previous lemma lim
i→∞

Ncov (aix) ≤
Ncov (y). Since Ncov is constant on A-orbits and we assumed that y satis�es MINK, we conclude
that Ncov (x) ≤ Ncov (y) ≤ 1

2n , hence x satis�es MINK. The second claim follows from the fact that
for almost every x ∈ Xn the orbit Ax is dense, and we already know of lattice examples for which
MINK holds.
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When studying the A-orbits , on which Ncov is constant, it is helpful to distinguish between
bounded and unbounded orbits. In the space Xn there is a simple criterion, called Mahler criterion,
which checks when is a set bounded. For that we need to following de�nition:

De�nition 3.3. For a lattice L ≤ Rn denote by |L| = min {‖v‖ | 0 6= v ∈ L}.

Theorem 3.4 (Mahler Criterion). A set Ω ⊆ Xn is bounded if and only if inf
L∈Ω
|L| > 0.

Mahler criterion states that Ω is bounded if we have a uniform positive lower bound on all the
nonzero vector in all the lattices in Ω.

We now want to understand Mahler criterion for A-orbits. Let L ≤ Rn be a unimodular lattice.
One reason for AL to be unbounded is if L contains a nonzero vector v with a zero entry. Indeed,
assuming that v1 = 0, and letting aε = diag

(
1

εn−1 , ε, ..., ε
)
, we get that aεv ∈ aεL is a nonzero vector

and ‖aεv‖ → 0. As the next lemma shows, the parameter that measures the boundedness of AL is
the multiplicative norm (and for vectors with zero entries the multiplicative norm is always zero!).

Lemma 3.5. Let L ≤ Rn be a unimodular lattice. Then the A-orbit AL is bounded if and only if
N (L\ {0}) > 0.

Proof. For any t̄ ∈ Rn0 and 0 6= v ∈ L we have that

‖a (t̄) v‖22
n

=

∑n
1 (etivi)

2

n
≥
(∏(

etivi
)2)1/n

= N (v)
2/n ≥ N (L\ {0})2/n

.

It follows that if N (L\ {0}) > 0, then
√
nN (L\ {0})1/n

is a uniform lower bound on {|aL| , a ∈ A},
and hence AL is bounded.

Suppose now that N (L\ {0}) = 0, so for any ε > 0 we can �nd 0 6= v ∈ L such that N (v) < ε.
If v has a zero entry, then we have already seen that AL is unbounded. Suppose that vi 6= 0 for all

i, and set ai = N(v)1/n

|vi| so that a = diag (a1, ..., an) ∈ SLn (R) and |(av)i| = N (v)
1/n

. It then follows

that aL contains the vector av with ‖av‖22 = nN (v)
2/n ≤ nε2/n. As ε > 0 was arbitrary, we get that

AL is unbounded.

The �nal detail that we need is Minkowski's lemma. As we seen above, boundedness is implied
by a uniform positive lower bound on |L|. An upper bound always exists and we can �nd such bound
which depends only on the dimension.

Theorem 3.6. (Minkowski's Theorem): Let L ≤ Rn be a lattice. Then |L| ≤ 2

(
covol(L)∣∣∣B(E)

n (1)
∣∣∣
)1/n

where

B
(E)
n (1) is the n-dimensional Euclidean ball of radius 1.

Now that we have some of the de�nitions for the space of lattice, let us prove that not all of the
lattices has the form DOTU.

Claim 3.7. There are lattices which are not DOTU.

Proof. If a lattice L has the form akuZn with a ∈ A, k ∈ SOn (R) and u ∈ Un, then its A-orbit
contains kuZn which contains the vector kue1 = ke1 of length 1. Thus, to �nd a non DOTU matrix,
it is enough to �nd a unimodular lattice L such that |aL| > 1 for all a ∈ A. Equivalently, using
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again the same argument as in lemma 3.5 for a uniform lower bound, we want to �nd a lattice L

with N (L\ {0})1/n
> 1√

n
. For that, we will use lattices coming from �eld extensions.

Let K/Q be a totally real �eld extension with real embeddings σ1, ..., σk : K→ R, OK its integer
ring and LK = {(σ1 (α) , ..., σn (α)) | α ∈ OK} its corresponding lattice. Since any nonzero element
in OK has a nonzero norm in Z, we get that N (LK\ {0}) ≥ 1. Normalizing LK we obtain a unimodular
lattice with (

N
(
D
−1/2n
K LK\ {0}

))1/n

=
1

D
1/2n
K

N (LK\ {0})1/n ≥ 1

D
1/2n
K

.

Thus, to �nd a non DOTU matrix, it is enough to �nd such OK with n > D1/n. Here we use the
Golod-Shafarevich theorem [5] which states that there are Ki/Q with [Ki : Q] = ni → ∞ such that

D
1/ni

i is uniformly bounded, hence ni

D1/ni
→∞ > 1.

4 Well rounded lattices

We now return to the search for another de�nition for �nice� lattices which hopefully implies that
they have small covering radius. One reason for a lattice to have a small covering radius is if it is
generated by small vectors. In particular we can consider well rounded lattices.

De�nition 4.1. Let L ≤ Rn and let Lmin = spanZ {v ∈ L | ‖v‖ = |L|} be the subgroup of L
generated by the smallest nonzero vectors. We say that L is well rounded if spanR (Lmin) = Rn, or
equivalently [L : Lmin] <∞.

Note that if v1, ..., vn ∈ L are independent vectors, then
{∑

aivi | |ai| ≤ 1
2

}
is a fundamental

domain of spanZ {v1, ..., vn}, and hence contains a fundamental domain of L. In particular, if the vi
are all small, we can hope that L would have a small covering radius.

Example 4.2. • The simplest example is Zn, in which case the smallest nonzero vectors are
{±ei | i = 1, ..., n} which generate the full lattice. For any other lattice in the A-orbit Zn, the
smallest nonzero vector generate a lattice of dimension strictly less than n.

• Another two dimensional example is the lattice corresponding to Z [ω] where ω is a primitive
third root of unity. In this case, the smallest nonzero vectors are ±1,±ω,±ω2 which generate
the full lattice (note that even ignoring the signs, this is not a basis, but just a spanning set).

• Consider the lattice L = Zn+Z ·
(

1
2 , ...,

1
2

)
. If n ≥ 5, then the shortest nonzero vectors in L are

exactly {±ei | i = 1, ..., n}, which generate the lattice Zn which has index 2 in L. It follows
that L is well rounded, but the shortest vectors do not generate the full lattice.

Minkowski's conjecture can now be proven if we can show that:

(Wn). For any n-dimensional lattice L, its A-orbit AL contains a well rounded lattice.

(Cn). Any well rounded n-dimensional lattice has covering radius ≤
√
n

2 .

In this section we will show the main ideas from McMullen's [10] in which he proved Wn for bounded
A-orbits and for all n.

The covering conjecture Cn is known as conjecture Woods and was proved by him for n ≤ 6 in
[16] and was later proved by Hans-Gill, Raka, Sehmi, Kathuria for n = 7, 8, 9 in [8, 7, 6]. On the other
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hand, it was shown by Regev, Shapira and Weiss in [13] that Woods' conjecture is false for dimension
n ≥ 30. Building on McMullen's ideas Shapira and Weiss proved a similar result with stable lattices
instead of well rounded lattices in [14] for which the corresponding Cn conjecture is known for n ≤ 7.
Finally in [15] Solan upgraded the results of both McMullen's and Shapira and Weiss' and proved
that every A-orbit contains both a well rounded lattice and a stable lattice (namely, don't need the
closre, nor the bounded condition).

4.1 The n = 2 case

We begin with McMullen's ideas for dimension n = 2 in which the diagonal group A is isomorphic
to R via t 7→ a (t) := diag (et, e−t). We want to show that if x ∈ X2 with Ax bounded, then there
exists some a ∈ A such that ax is well rounded. This case is easy - if x is already well rounded
then we are done, and otherwise we can �nd a unique (up to a sign) vector v = (v1, v2) ∈ L\ {0} of
shortest length. Since the orbit is bounded, both v1 and v2 are nonzero, hence ‖a (t) v‖ → ±∞ as

t → ∞. By theorem 3.6 we have that |a (t) v| > |a (t)L| for |t| large enough (since |L| ≤
√

2n

B(E)(1)

for L unimodular of rank n). Thus, using the intermediate value theorem, we can �nd the last time t
for which |a (t) v| = |a (t)L| which implies that a (t)L has two linearly independent shortest vectors,
and therefore it is well rounded.

Let us give a bit more complicated reasoning for this result, which is more suitable for generalizing
to higher dimension.

We want to �nd some a ∈ A for which rank ((aL)min) = 2. Consider the open set U1 =
{a ∈ A | rank ((aL)min) = 1} and the map a 7→ M (a) := a−1 (aL)min ≤ L. Namely, M (a) is
the rank 1 subgroup of L such that after acting by a it contains the smallest nonzero vector in aL
(in the argument above, M (a) = Zv). We want to show that U1 ( A.

The map a 7→M (a) is locally constant - if av is the unique (up to sign) nonzero minimal vector
in aL, then the same is true in a small neighborhood of a. The argument above shows that each
connected component of U1 is bounded. Moreover, this bound is uniform. The vectors av are all on
the hyperbola xy = N (v) ≥ N (L\ {0}), so the time in which this this hyperbola spends inside the

ball of radius
√

2n

B(E)(1)
has an upper bound which depends only on the dimension and N (L\ {0}).

Thus, the n = 2 case follows from the fact that A ∼= R cannot be covered by (1) open (2) connected
sets (3) with uniformly bounded diameter which are disjoint.

4.2 The n = 3 case.

As in the n = 2 case, we now de�ne

U1 = {a ∈ A | rank ((aL)min) = 1}
U2 = {a ∈ A | rank ((aL)min) = 2}

and we want to show that U1 ∪ U2 ( A ∼= R2. The same argument from before shows that (1) U1 is
an open set and the (2) diameters of its connected components are uniformly bounded. The set U2

is no longer open, but for clearance of explanation we will ignore this problem here now and treat
U2 as though it is open.

Suppose that U2 satis�es condition (2) as U1 and U1 ∪U2 = R2. Then the connected components
of U1 and those of U2 are open with uniformly bounded diameter, and each point in R2 is covered by
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at most 2 such components. It is not hard to believe that this cannot be true. Unfortunately, things
become more complicated in higher dimension.

The main problem that we have is as follows. Suppose that rank (Lmin) = 2 and Lmin has 2
linearly independent vectors v1, v2 of length |L|. If we act by some small a and move to the lattice
aL, the lengths of av1, av2 can become di�erent so that we fall from U2 to U1 which is OK. Suppose
now that we can �nd a direction in A in which ‖av1‖ = ‖av2‖. As in the previous case, if we �ow
far enough the length of these vectors will go to in�nity (the orbit is bounded), so at some point
there should be another vector av3 with ±v1,±v2,±v3 distinct, and ‖avi‖ = |aL| for i = 1, 2, 3. The
problem now is that they no longer need to be linearly independent (think Z [ω]). If we continue
to �ow, then maybe ‖av1‖ increases while ‖av2‖ = ‖av3‖ decrease, hence we can no longer show
immediately that the connected components of U2 are bounded.

As we don't want to keep track on all the short vectors, in particular when we go to even higher
dimension, we will instead look on covolume of (aL)min in spanR ((aL)min). Note that for rank one
lattices, this is exactly the length of the shortest nonzero vector.

To study this covolume, we use the following notation.

De�nition 4.3. Let 1 ≤ d ≤ n. We shall denote by
(

[n]
d

)
the subsets I ⊆ [n] of size d. For

I = {i1, ..., id} ∈
(

[n]
d

)
with i1 < · · · < id let eI = ei1 ∧ · · · ∧ eid ∈

∧d
(Rn).

For w ∈
∧d

(Rn) with w =
∑

I∈([n]
d )

αIeI write ‖w‖2 =
√∑

α2
I and ‖w‖∞ = sup |αI |.

Note �rst that for d = 1, namely
∧1

(Rn) = Rn, the norms ‖w‖2 and ‖w‖∞ are the standard
Euclidean and supremum norm. In particular if 0 6= v ∈ Rn, then ‖v‖2 = |Zv|, and this can be
generalized to higher dimension.

Claim 4.4. Let v1, ..., vd ∈ Rn linearly independent, and set w = v1 ∧ · · · ∧ vd ∈
∧d

(Rn). Then
the covolume of spanZ {v1, ..., vn} in spanR {v1, ..., vn} is ‖w‖2, which up to a bounded scalar the
covolume is ‖w‖∞.

Proof. The �rst part is just a special case of Cauchy-Binet's theorem, while the second follows from

the fact that all the norms on R(n
d) are equivalent.

We now return to show that the connected components of U2 are not �too big�. As in U1, the map
a 7→ a−1 (aL)min for a ∈ U2 is locally constant so each connected component correspond to some
rank 2 sublattice L′ = spanZ {v1, v2} ≤ L. We �rst note that the argument from the 1-dimensional
case still holds: since (aL)min is generated by the smallest vectors from L, and their size is uniformly
bounded from above (by theorem 3.6), the covolume of (aL)min is uniformly bounded from above.
Thus, if aL′ has large covolume, then it cannot be (aL)min and therefore a is not in the connected
component which correspond to L′.

Letting w = v1 ∧ v2 =
∑
|I|=2 αIeI ∈

∧2
(Rn), if a (t̄) = diag (et1 , et2 , et3) , t̄ ∈ R3

0, then the

covolume of a (t̄)L′ is (up to a scalar)

‖a (t̄)w‖∞ =

∥∥∥∥∥∥
∑
|I|=2

e
∑

i∈I tiαIeI

∥∥∥∥∥∥ = max
|I|=2

e
∑

i∈I ti |αI | .

If all the αI are nonzero, then ‖t‖ → ∞ implies that max|I|=2

(
e
∑

i∈I ti
)
→ ∞ and therefore

‖a (t̄)w‖∞ → ∞ and we continue along the same argument as in the case n = 2. If some of

12



the αI are zero, for example α{2,3} = 0, then choosing t̄ = (−2m,m,m) we get that

‖a (t̄)w‖∞ = e−m max
{∣∣α{1,2}∣∣ , ∣∣α{1,3}∣∣} .

But as m→∞, the covolume goes to zero, so that by theorem 3.6 the sublattice a (t̄)L′ and therefore
a (t̄)L contain nonzero vectors with length which converge to zero, contradicting the fact that AL is
bounded.

Thus, we proved that any connected component of U2 is still bounded (with uniform upper
bound on the diameters). To summarize the arguments, we showed that given the pattern of nonzero
coe�cients in w we either have:

1. Many of the αI are nonzero, so we could �nd a coe�cient e
∑

i∈I ti which goes to ∞.

2. Too few of the αI are nonzero, so we could �nd big t̄ ∈ R3
0 for which all the coe�cients e

∑
i∈I ti

for the nonzero αI go to zero. This contradicts the boundedness of the orbit.

Since we are only in dimension n = 3, there are only 3 coe�cients. As we shall see next, in higher
dimension we have one more case in which some of the e

∑
i∈I ti are equal to 1 while the rest might

go to zero.

4.3 The n ≥ 4 case

Given w ∈
∧k Rn, the main reason we should expect ‖a (t̄)w‖ to be bounded for large t̄ is if a (t̄0)w =

w for some t̄0 6= 0, and then a (mt̄0)w = w for all m.

Example 4.5. Consider the ring Z
[√

2,
√

3
]
and its corresponding lattice L = {(β, σ (β) , τ (β) , στ (β))}

where σ, τ are the Galois maps σ :
√

2↔ −
√

2 and τ :
√

3↔ −
√

3. Equivalently, L is generated by

v1 = (1, 1, 1, 1)

v2 =
(√

2,−
√

2,
√

2,−
√

2
)

v3 =
(√

3,
√

3,−
√

3,−
√

3
)

v6 =
(√

6,−
√

6,−
√

6,
√

6
)
.

This lattice contains the sublattice L′ = spanZ {v1, v2} which correspond to Z
[√

2
]
. If u ∈ Z

[√
2
]×

,

then uZ
[√

2
]

= Z
[√

2
]
, which implies that for

a = diag (u, σ (u) , τ (u) , στ (u)) = diag (u, σ (u) , u, σ (u))

we have that aL′ = L′. This can also be seen by considering the wedge product

v1 ∧ v2 = −2
√

2e{1,2} − 2
√

2e{1,4} − 2
√

2e{3,2} − 2
√

2e{3,4}.

Acting by element of the form a (t,−t, t,−t) doesn't change the covolume.

Note that in the example above the invariance of a k-dimensional subspace arose from a sub�eld
extension of degree k over Q. Moreover, the stabA (w) correspond to the invertible elements in the
integer ring, which by Dirichlet's unit theorem has rank k − 1. This result can be shown directly
without using the algebraic construction. Thus we expect ‖aw‖ to increase as a gets further away
from this k − 1 dimensional space in A.
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Lemma 4.6. Let L ≤ Rn be a lattice with AL bounded and Ud = {a ∈ A | rank ((aL)min) = d}.
Then any connected component of Ud in A ∼= Rn−1 is contained in a set of the form K × Rj where
j ≤ d− 1 and the diameter of K is uniformly bounded (as a function of d, n and L).

The lemma above was proved by McMullen in [10], though in a stronger form, where the Ud are
chosen to be open sets a little bit larger than in the de�nition above. Finally, to prove that AL
contains a well rounded lattice McMullen proved that the space Rn−1 (∼= A) cannot be covered by
U1, ..., Un−1 as in the previous lemma (up to a simpli�cation of notation for clarity...).

Remark 4.7. Clearly, if an orbit AL is compact, then it is bounded. It is well known that all the
compact orbit arise from algebraic constructions similar to the one above (see section �A). The other
direction is not known, and it was conjectured by Margulis that for dimension n ≥ 3 all the bounded
A-orbits are compact, and hence come from algebraic constructions.
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5 Unbounded A-orbits

Next we consider the proof for unbounded A-orbits which �rst appeard in [2]. The simplest reason
for an A-orbit AL to be unbounded, is if L contains a nonzero vector with zero entries. To formulaize
this, it means that we can �nd I ⊆ [n] nontrivial such that L∩RI 6= {0} where RI is the subspace of
Rn supported on the coordinates in I. An even stronger reason is if there is some I ⊆ [n] nontrivial
such that L ∩ RI is a lattice in RI . As L ∩ RI is a lattice of smaller rank than L, this suggests an
induction argument.

De�nition 5.1. We say that a lattice L ≤ Rn is axis reducible if there is some nontrivial I ⊆ [n]
such that L ∩ RI is a lattice in RI .

Lemma 5.2. If MINK is true for dimension ≤ n−1, then it is true for n-dimensional axis reducible
lattices.

Proof. Let L ≤ Rn be an axis reducible lattice. By a permutation of the indices, we can write
n = n1 + n2 and Rn = Rn1 ⊕ Rn2 such that L1 := L ∩ Rn1 is a lattice in Rn1 (where we identify
Rni as the axis subspaces of Rn). Let L2 ≤ L such that L = L1 ⊕ L2. By acting with a suitable
diagonal matrix on L, we may assume that covol (Rn1 : L1) = 1 and that covol (Rn2 : π (L2)) = 1
where π : Rn → Rn2 is the orthogonal projection.

Let v = v1+v2 where vi ∈ Rni . By assumption we can �nd γ(2) ∈ L2 such thatN
(
π
(
γ(2)

)
− v2

)
≤

1
2n2

. Write γ(2) = γ
(2)
1 + γ

(2)
2 with γ

(2)
i ∈ Rni . Again, by assumption, we can �nd γ(1) ∈ L1 such that

N
(
γ(1) −

(
v1 − γ(2)

1

))
≤ 1

2n1
. It then follows that γ = γ(1) + γ(2) ∈ L satis�es

N (γ − v) = N
([
γ(1) −

(
v1 − γ(2)

1

)]
+
[
γ

(2)
2 − v2

])
= N

(
γ(1) −

(
v1 − γ(2)

1

))
N
(
γ

(2)
2 − v2

)
≤ 1

2n1
· 1

2n2
=

1

2n
.

Of course, if L is axis reducible, than its A-orbit is unbounded, but as we shall see next the converse
is almost true as well. Similarly if Ax contains an axis reducible lattice, then Ax is unbounded. The
next goal is to show that the converse is true as well, and then use this result to prove MINK for
unbounded orbits.

5.1 Unbounded orbits - the n = 2 intuition.

The next goal is to show that unboundned orbits always satisfy MINK. In order to prove that we
shall show that any such orbit contain in its closure an axis reducible lattice.

First, to get some intuition, let us consider the case n = 2. Let x ∈ X2 be a lattice, 0 6= v ∈ x its

smallest nonzero vector, and without loss of generality assume that v =

(
ε1

ε2

)
with ε1 ≥ ε2 ≥ 0.

As we consider unbounded orbits, we shall assume that ε1 > 0 is very small (so that x is near the
cusp). As v is a smallest nonzero vector, we can complete it to a basis {v, u} of x. Acting with

the matrix a = diag
(

1
ε1
, ε1

)
, we get a new basis consisting of v′ = av =

(
1

ε1ε2

)
which is almost(

1
0

)
and u′ = au. The only vectors which complete e1 to a unimodular lattice are of the form
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αe1 ± e2 for some α ∈ R. Note that the lattices of the form spanZ {e1, αe1 ± e2} are axis reducible.
Let us show that {v′, u′} is almost of this form.

Since v′1 = 1, we get that u′′ = u′− u′1 · v′ ∈ {0}×R, which is just the projection of u′ to {0}×R
via the direction v′ (see �gure ???? below). Computing the covolume, we get that

|u′′2 | = |det (v′, u′′)| = |det (v′, u′ − u′1v′)| = |det (v′, u′)| = 1

so that u′′ = (0, 1). Unfortunately, this is not necessarily a vector in our lattice, but we can lift
it back to get u′′′ = (0, 1) + δv′ in the lattice where |δ| ≤ 1

2 . We conclude that ax can be written

as

(
1 δ

ε1ε2 1 + δε1ε2

)
Z2. If we can �nd a sequence of such lattices with

∥∥v(i)
∥∥ → 0 (so that∣∣∣ε(i)

2

∣∣∣ , ∣∣∣ε(i)
1

∣∣∣ → 0), then by restricting to a subsequence for which δi converge to some δ∞, we get a

limit lattice of the form

(
1 δ∞
0 1

)
Z2 which is axis reducible.

5.2 Unbounded orbits - the general case

Suppose now that the rank of the given lattice L is strictly greater than 2 with height ht∞ (L) =

sup
{
‖v‖−1
∞ | 0 6= v ∈ L

}
very large. We start the same way by acting with a diagonal matrix which

takes the smallest nonzero vector v ∈ L to be a vector v′ which is almost one of the vectors in the
standard basis, without loss of generality e1. Note that the size of this matrix is at most 1

‖v‖∞
. As

before, we project to the subspace {0}×Rn−1 via the direction of v to get a lattice L′ ≤ {0}×Rn−1.
If this lattice doesn't contain short vectors, then the same argument as before will work, and we will

get the A-orbit of L contains a lattice of the form

(
1 w
ε̄ B

)
Z3 where the w ∈ R2 and B ∈ R2×2 are

not too big (which are more or less correspond to δ from the rank 2 case, and to the basis of L). If
L′ does contain small vector, we need to use induction and maybe act with a second diagonal matrix
a′ (to ��x� B) and simultaneously not ruin ε̄. The reason this will work is that if u is the smallest
nonzero vector in L′ it cannot be �too� small with respect to ‖v‖, hence the new diagonal matrix a′

will not have too big entries.

Lemma 5.3. For any sequence in Xn there is a subsequence xi ∈ Xn, an integer 0 ≤ d ≤ n− 1 such
that a

(
t̄(i)
)
xi = B(i)Zn where

1. If the original sequence diverges to in�nity we ay choose d ≥ 1.

2. B(i) are (d, n− d) block matrices B(i) =

(
B

(i)
1 B

(i)
2

B
(i)
3 B

(i)
4

)
,

3. the
∥∥B(i)

∥∥
∞ are uniformly bounded and

∥∥∥B(i)
3

∥∥∥
∞
→ 0,

4. t
(i)
k ≤ 0 for k ≥ d+ 1 and maxk

{
et

(i)
k

}
≤ 2nht∞ (xi) for all i.

Proof. If the sequence is bounded, then we can take d = 0 (so that B(i) = B
(i)
4 ) and t̄(j) = 0̄ and we

are done. In particular this is always true for n = 1.
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Assume that the sequence contains (and without loss of generality is) an unbounded subse-
quence xi → ∞. Let 0 6= v(i) ∈ xi with

∥∥v(i)
∥∥
∞ minimal, and rearrange the indices so that

εi :=
∣∣∣v(i)

1

∣∣∣ =
∥∥v(i)

∥∥
∞ and without loss of generality assume that 0 < εi < 1 for all i. Let ã(i) =

diag

(
1
εi
, ε

1
n−1

i , ..., ε
1

n−1

i

)
, x̃i = ã(i)xi and let ṽ

(i) = ã(i)v(i). Note that ṽ(i) =
(

1, ε
1

n−1 v
(i)
2 , ..., ε

1
n−1 v

(i)
n

)
and for k ≥ 2 we have that

∣∣∣ṽ(i)
k

∣∣∣ ≤ ε n
n−1

i , so that ṽ(i) is very close to (1, 0, ..., 0).

Since ṽ
(i)
1 6= 0, we get that Rn = Rṽ(i) ⊕

(
{0} × Rn−1

)
and we let π : Rn → {0} × Rn−1 be the

projection with kernel Rṽ(i). It then follows that π (x̃i) ≤ {0} ×Rn−1 is a lattice, and moreover it is

unimodualr since
∣∣∣ṽ(i)

1

∣∣∣ = 1. In addition, if u = (0, u2, ..., un) ∈ π (x̃i), then there exists some |δ| ≤ 1
2

such that u+ δṽ(i) ∈ x̃i. In particular, if 0 6= u ∈ π (xi) with ‖u‖∞ minimal, then

εi ≤
∥∥∥v(i)

∥∥∥
∞
≤
∥∥∥∥(ã(i)

)−1 (
u+ δṽ(i)

)∥∥∥∥
∞

=

∥∥∥∥(ã(i)
)−1

u+ δv(i)

∥∥∥∥
∞
≤
∥∥∥∥(ã(i)

)−1

u

∥∥∥∥
∞

+
1

2
εi = ε

− 1
n−1

i ‖u‖∞ +
εi
2
.

Hence, we obtain that ‖u‖∞ ≥
1
2ε

n
n−1

i , hence ht∞ (π (x̃i)) ≤ 2ε
− n

n−1

i .
Use the induction hypothesis on π (x̃i) ∈ Xn−1 so by restricting to a subsequence (which we still

denote by x̃i) we get that

a
(
t̃(i)
)
π (x̃i) = B̃(i)Zn−1, B̃(i) =

(
B̃

(i)
1 B̃

(i)
2

B̃
(i)
3 B̃

(i)
4

)
,

where B̃(j) are (d− 1, (n− 1)− (d− 1)) block matrix,
∥∥∥B̃(j)

∥∥∥
∞

are uniformly bounded,
∥∥∥B̃(j)

3

∥∥∥
∞
→

0. The conditions on t̃(j) are that t̃(i) =
(
t̃
(i)
2 , ..., t̃

(i)
n

)
∈ Rn−1

0 such that t
(i)
k ≥ 0 for k ≤ d, t

(i)
k ≤ 0

for k ≥ d + 1 and maxk

{
et

(i)
k

}
≤ 2n−1ht∞ (π (x̃j)) ≤ 2n−1

(
1
2ε

n
n−1

i

)−1

. Note that if B is a lift of a

basis for π (x̃j), then B ∪
{
ṽ(i)
}
is a basis for x̃j . We already saw that every vector in π (x̃j) can be

lifted to a vector in x̃j by adding to it δṽ(1) with |δ| ≤ 1
2 , hence we can write

x̃(i) =

ṽ(1) | a
(

0,−t̃(i)
) 0̄ 0̄

B̃
(i)
1 B̃

(i)
2

B̃
(i)
3 B̃

(i)
4


( 1 δ̄(i)

0 In−1

)
Zn,

where δ̄(i) ∈ Rn−1 with
∥∥δ̄(i)

∥∥
∞ ≤

1
2 . We claim that a

(
0, t̃(i)

)
x̃(i) = a

(
t(i)
)
x(i) where

t(i) = ln (εi)

(
−1,

1

n− 1
, ...,

1

n− 1

)
+
(

0, t̃(i)
)

has the required (d, n− d) block presentation. First, since d − 1 ≥ 0 (from the induction), then

k ≥ d+ 1 implies in particular that k ≥ 2 and therefore t
(i)
k = ln(εi)

n−1 + t̃
(i)
k ≤ 0. Moreover, for k ≥ 2

we get that

et
(i)
k = ε

1
n−1

i · et̃
(i)
k ≤ ε

1
n−1

i · 2n−1ht∞ (π (x̃i)) ≤ 2n−1ε
1

n−1

i

(
1

2
ε

n
n−1

i

)−1

= 2nεi ≤ 2nht∞ (xi) ,
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so the condition on t̄ is satis�ed.
Next we want to show that the max norm of

B(i) =

a(0, t̃(i)
)
ṽ(1) |

 0̄ 0̄

B̃
(i)
1 B̃

(i)
2

B̃
(i)
3 B̃

(i)
4


( 1 δ̄(i)

0 In−1

)

is unifomly bounded, and since we already know that it is true for the B̃(i) and for δ̄, it is enough
to show it for a

(
0, t̃(i)

)
ṽ(1). The �rst coordinate of this vector is just 1 which is of course uniformly

bounded. For d ≥ k ≥ 2 we get that(
a
(

0, t̃(i)
) ∣∣∣ṽ(1)

∣∣∣)
k
≤ 2n−1ht∞ (π (x̃i))

∣∣∣ṽ(1)
k

∣∣∣ ≤ 2nε
− n

n−1

i ε
n

n−1

i = 2n

is again uniformly bounded. Finally, we need to show that
∥∥∥B(i)

3

∥∥∥
∞
→ 0, and since

∥∥∥B̃(i)
3

∥∥∥
∞
→ 0

and
∥∥δ̄(i)

∥∥
∞ ≤

1
2 , it is enough to show that

(
a
(
0, t̃(i)

) ∣∣ṽ(1)
∣∣)
k
→ 0 for k ≥ d + 1. Indeed, for these

indices we have that t̃(i) ≤ 0 so that(
a
(

0, t̃(i)
) ∣∣∣ṽ(1)

∣∣∣)
k
≤
∣∣∣ṽ(1)
k

∣∣∣ ≤ ε n
n−1

i → 0.

Corollary 5.4. Let x ∈ Xn such that Ax is unbounded. Then Ax contains an axis reducible lattice.

Proof. By the previous lemma, Ax contains lattice of the form B(i)Zn where B(i) =

(
B

(i)
1 B

(i)
2

B
(i)
3 B

(i)
4

)
are (d, n− d) block matrices with 1 ≤ d ≤ n− 1,

∥∥B(i)
∥∥
∞ are uniformly bounded and

∥∥∥B(i)
3

∥∥∥
∞
→ 0.

Since these matrices are uniformly bounded, they have a converging subsequence to determinant 1

matrix of the form B(∞) =

(
B

(∞)
1 B

(∞)
2

0d,n−d B
(∞)
4

)
, hence Ax contains B(∞)Zn which is an axis reducible

lattice.

Corollary 5.5. Suppose that MINK is true for dimension ≤ n − 1 and x ∈ Xn such that Ax is
unbounded. Then x satis�es MINK.

Proof. By 5.4 Ax contains an axis reducible lattice y which satis�es MINK by lemma 5.2. Using
the fact that N is constant on A-orbits and it is upper semicontinuous, we conclude that N (x) ≤
N (y) ≤ 1

2n , hence x satis�es MINK.

The original proof for the corollary above was given in [2] by Birch and Swinnerton-Dyer.
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A Compact A-orbits and their algebraic structure

In this section we will show the correspondence between compact A-orbits and full modules (up
to equivalence - de�nition below) in totally real extensions. Recall that we identify the positive
diagonal group A ≤ SLn (R) with Rn0 ∼= Rn−1 via t̄ 7→ diag (et1 , ..., etn). In particular Ax ∼= A/stabA(x)

is compact exactly when stabA (x) is a lattice in A. Thus, compactness of the orbit implies in
particular that x is invariant under nontrivial elements of A.

To get some intuition we begin with the usual example of Z
[√

2
]
viewed below.

Figure A.1: The lattice corresponding to Z
[√

2
]
with the hyperbolas xy = ±1.

Let L = spanZ
{

(1, 1) ,
(√

2,−
√

2
)}
≤ R2 be the (non normalized) lattice corresponding to Z

[√
2
]
.

Equivalently, L =
{

(α, σ (α)) | α ∈ Z
[√

2
]}

where σ
(
x+
√

2y
)

= x −
√

2y is the nontrivial Galois

action on Q
(√

2
)
. In this 2-dimensional case, the group A is just

{
a (t) :=

(
et 0
0 e−t

)
| t ∈ R

}
and acting by A means that the points of L move along the hyperbolas xy = r. For example,
consider the points p1 = (1, 1) and p2 =

(
3 + 2

√
2, 3− 2

√
2
)
which are on the hyperbola xy = 1.

These points correspond to 1, u = 3+2
√

2 ∈ Z
[√

2
]
, and moreover their algebraic norms are 1, hence

they are actually in Z
[√

2
]×

. Taking tu := ln
(
3 + 2

√
2
)
we get that a (tu) p1 = p2, so at least one

point from L returns to L after acting by a (tu). We claim that L is actually invariant under a (tu),
i.e. a (tu)L = L, and the reason is that uZ

[√
2
]

= Z
[√

2
]
. Indeed, any point in L has the form

(α, σ (α))
tr
for some α ∈ Z

[√
2
]
, hence

a (tu) · (α, σ (α))
tr

= diag (u, σ (u)) (α, σ (α))
tr

= (uα, σ (uα))
tr ∈ L.

We conclude that a (tu)L ≤ L, and with the same argument for the inverse map (which still applies

since u−1 is also in Z
[√

2
]×

) we get equality. It is easy to show that tu ∈ R is the minimal positive
number such that a (tu)L = L (there are no point between p1 and p2 on the hyperbola xy = 1).
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Thus stabA (L) = 〈a (ntu) | n ∈ Z〉 corresponds to the lattice Ztu in R, therefore AL ∼= R/Z.

Let us generalize the example above.

De�nition A.1. Let K/Q be a totally real �eld of degree n. An additive subgroup M ≤ K is called
a full module if M = spanZ {v1, ..., vn} where v1, ..., vn ∈ K form a basis of K over Q. If M is also a
unital ring, then it is called an order in K.

For the rest of this section, unless stated otherwise, K will always denote a totally real extension
of Q of degree n, and σi : K→ R, i = 1, ..., n will be the distinct n embeddings.

Example A.2. 1. In Q the full modules are just qZ for 0 6= q ∈ Q and the only order is Z.

2. In Q
(√

2
)
we have many distinct orders - spanZ

{
1, n
√

2
}
is an order for any 0 6= n ∈ N.

One way to �nd full modules in K is to begin with its integer ring OK and then any ideal in OK
will be a full module. More over if I E OK, then αI is also a full module for any 0 6= α ∈ K, or
in other words every fractional ideal is a full module. The other direction is almost true - every full
module is a fractional ideal for some order in K (though not necessarily OK). We begin with two
useful results on full modules which will simplify this other direction.

Lemma A.3. Let M1,M2 ≤ K with M1 �nitely generated and QM2 = K. Then there exists 0 6=
m ∈ N such that mM1 ⊆M2.

Proof. Write M1 = spanZ {α1, ..., αk}. Since αi ∈ K = QM2, we can �nd mi ∈ N such that

miαi ∈ M2. Taking m =
∏k

1 mi we get that mαi ∈ M2 for all i, which of course implies that
mM1 ⊆M2.

Lemma A.4. A subgroup M ≤ K is a full module i� M is �nitely generated and QM = K.

Proof. The⇒ direction follows directly from the de�nition. Assume now thatM is �nitely generated
and QM = K. Since these properties are satis�ed by OK as well, we conclude from lemma A.3 that
we can �nd m1,m2 such that m1m2OK ≤ m2M ≤ OK. It is well known that OK ∼= Zn where
n = [K : Q], so up to isomorphism we get that m1m2Zn ≤ m2M ≤ Zn, implying that m2M , and
therefore M itself, have bases of size n. Since QM = K which has dimension n over Q, the base of
M over Z must also be a base of K over Q, which completes the proof.

Next, we �nd for any full module M an order OM for which M is a fractional ideal.

Lemma A.5. Let M be a full module in K and set OM := {α ∈ K | αM = M}. Then OM ≤ OK
is an order and M is a fractional ideal of OM .

Proof. Clearly, OM is a unital ring. As in the previous lemma, in order to show that OM is a full
module, it is enough to show that mOK ≤ OM ≤ OK for some m ∈ N.

Clearly the product OK ·M is also a full module (�nitely generated and QOKM = K), so by
lemma A.3 we can �nd m such that mOKM ≤ M . Thus, by de�nition mOK ≤ OM . On the other
hand, if α ∈ OM , then αM ⊆M and since M is �nitely generated we conclude that α is an algebraic
integer. Thus we proved that OM ≤ OK, implying that OM is a full module.

The module M is �nitely generated and OMM ⊆ M , thus it is a fractional ideal of OM . Alter-
natively, letting 0 6= k ∈ N such that I = kM ⊆ OM we get that OMI ⊆ I so I E OM is an ideal,
and hence M = 1

k I is a fractional ideal of OM .
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Remark A.6. If M is any order in K, then M = OM , so any order must be contained in OK.

We can now de�ne the lattices which correspond to full modules, similar to what we seen with
Z
[√

2
]
.

De�nition A.7. Let K/Q be a totally real extension and σ1, ..., σn : K → R all the distinct real
embeddings. For α ∈ K we denote by vα = (σ1 (α) , ..., σn (α)) ∈ Rn, and if α ∈ K×, then we
write ln |vα| = (ln |σ1 (α)| , ..., ln |σn (α)|) ∈ Rn. Note that if Norm (α) :=

∏
σi (α) = ±1, then∑

ln |σi (α)| = 0, so that ln |vα| ∈ Rn0 .

Theorem A.8. Let M be a full module in K. Then:

1. The set LM = {vα | α ∈M} is a lattice in Rn.

2. The set LO×M
=
{

ln |vα| | α ∈ O×M
}
is a lattice in Rn0 .

Proof. 1. It is well known that LOK is a lattice in Rn (where the covolume squared is the dis-
criminant). By lemma A.3 we can �nd m1,m2 such that m1m2OK ≤ m1M ≤ OK so that
Lm1M = m1LM is between LOK and m1m2LOK , so it must be a lattice in itslef also.

2. By Dirichlet's unit theorem, the set LO×K
is a lattice in Rn0 . While the same proof works for

any order, we can also show that LO×M
is a lattice by showing that it has �nite index in LO×K

.

Since O×K is a �nitely generated abelian group, it is enough to show that given α ∈ O×K , there
exists some m ∈ N for which αm ∈ O×M . This claim is equivalent to saying that αmOM ⊆ OM .
Recall that [OK : OM ] = k <∞ is �nite, and there are only �nitely many index k subgroups in
OK. Hence by acting on these subgroups with α, we get that there must be some m for which
αmOM = OM , which is what we wanted to show.

Finally we want to show that stabA (LM ) is a lattice in A. If we can show that LO×M
= stabA (LM ),

then we are done. Unfortunately, we work with the positive diagonal subgroup so this is not the
case, but it is almost true - elements from LO×M

stabilize LM up to a multiplication by −1's of some

of the coordinates. In order to overcome this problem we need to go down to a �nite index subgroup
of LO×M

.

De�nition A.9. An element in K is called totally positive if σi (α) > 0 for all i. For an order O
we denote by O×,+ = {α ∈ O× | α is totally positive}. Note that for any α ∈ O× we have that
α2 ∈ O×,+, so that [LO× : LO×,+ ] ≤ 2n−1.

Lemma A.10. Let M be a full module. Then the elements in stabA (LM ) are exactly the diagonal
elements which correspond to LO×,+ .

Proof. Suppose that a = diag (a1, ..., an) satis�es aLM = LM . Given 0 6= β ∈ M , there exists

0 6= γ = γa,β ∈ M such that a · vβ = vγ , implying that ai = σ(βi)
σ(αi)

= σ
(
βi

αi

)
. We conclude that

a = diag (vα) for some α = γ
β ∈ K×, and we want to show that αM = M . The argument above

can be restated as diag (vα) · vβ = vαβ , so that whenever β ∈ M we also have that αβ ∈ M , hence
αM ⊆M . Using the same argument for a−1, we get that α−1M ⊆M , and therefore αM = M (i.e.
α ∈ O×M ). The other direction is also true - if we start with α ∈ O×M and β ∈M , then αβ ∈M and
therefore diag (vα) · vβ = vαβ ∈M so that diag (vα) ∈ stabA (LM ).
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We conclude that the stabilizer of LM in the full diagonal group is exactly
{
diag (vα) | α ∈ O×M

}
.

As we work with the positive diagonal matrices, we get that stabA (LM ) = LO×,+
M

(up to the identi-

�cation of A with Rn0 ).

Corollary A.11. For any full module M , the A-orbit ALM is compact.

For a lattice L, denote by L̂ is normalized unimodular lattice, namely L̂ = 1
covol(L)1/n

L. So far we

have shown that M 7→ AL̂M maps full modules to compact orbits. One reason for two full modules
to be sent to the same orbit is if they are equivalent as follows.

De�nition A.12. Let M1,M2 be two full modules in K. We say that they are equivalent if M1 =
αM2 for some α ∈ K×.

Remark A.13. This equivalence relation is exactly the one used to de�ned the ideal class group of a
�eld.

Lemma A.14. If M1,M2 are equivalent, then AL̂M1
= RAL̂M2

for some ±1 diagonal matrix R.

Proof. Given α ∈ K× such that αM1 = M2, it is easy to see that LM2
= LαM1

= diag (vα)LM1
.

Setting r = |Norm (α)| = |det (diag (vα))|, the normalization of both sides produces

L̂M2
=

(
1

r1/n
diag (vα)

)
L̂M1

.

The matrix
(

1
r1/n

diag (vα)
)
is diagonal with determinant ±1, so we can write it as Ra where R is a

±1 diagonal matrix and a ∈ A, hence L̂M2
= RaL̂M1

, implying that AL̂M2
= RAL̂M1

.

Remark A.15. We can work with PGLn (R) instead of SLn (R), to overcome the inconvenience of ±1
diagonal matrices, but then of course we need to work with equivalence class of matrices.

Finally, we want to show that up to these ±1 diagonal matrices, the map [M ] 7→ AL̂M from
equivalence classes of full modules to compact orbits is a bijection.

Theorem A.16. Let Ax be a compact A-orbit. Then there is a unique totally real extension K/Q
such that Ax = AL̂M for some full module M in K. Moreover, this module is determined up to
equivalence.

Proof. If we knew that Ax = AL̂M for a full module M in K, then stabx (A) ∼= LO×,+
M

. For any

a ∈ stabx (A) we have ai,i = σi (a1,1) (assuming that σ1 = Id), hence the same holds for L =

algQ

(
stabA

(
L̂M

))
. In particular, the map a 7→ a1,1 from L to K is injective, namely up to this

embedding L ≤ K. If 0 6= α ∈ L ≤ K, then α is algebraic so that Q (α) = Q [α] ≤ L, hence α−1 ∈ L
also so that L is actually a �eld. Moreover, it contains O×M which is an n − 1 dimensional group of
algebraic units, hence L/Q must be of degree at least n = [K : Q], so we must have equality L = K.

With this in mind, let us start with a general compact orbit Ax and show that L = algQ (stabA (x))
is a totally real extension of dimension n over Q. Consider �rst the unital ring O = spanZ (stabA (x))
which is contained in the set of digaonal matrices so in particular it is commutative. Identifying x
with its corresponding lattice in Rn, we see that it doesn't have any nonzero vectors with zero entries,
since otherwise Ax wouldn't be bounded. In particular, if 0 6= a ∈ O, then {0} 6= ax ⊆ x hence a
doesn't have zero entries on the diagonal, implying that O doesn't have zero divisors.
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Write x = gZn for some g ∈ SLn (R). If 0 6= a ∈ O, then ax ⊆ x so that ag = gγa for some
0 6= γa ∈Mn (Z), implying that γa is diagonalizable where the diagonal entries of a are its eigenvalues
and the rows of g are the eigenvectors. In particular, the diagonal elements of a are algebraic numbers
of degree at most n. Let a ∈ O and let f ∈ Z [x] be the minimal polynomial for a1,1. Since f (a)1,1 = 0

and f (a) ∈ O, by the previous paragraph f (a) = 0. Writing f (x) = xd +
∑d−1

0 bix
i, bi ∈ Z, and

using the fact that b0 6= 0 (f is minimal), we get that a · −1
b0

(
ad−1 +

∑d−1
1 bia

i−1
)

= 1, so that a is

invertible in L = QO. Since any element in L has the form 1
ma for some a ∈ O we get that L is an

algebraic �eld extension of Q.
The elements of O are algebraic integers so that O ≤ OL. Furthermore stabA (x) is a subgroup

of O× of rank n− 1, so we must have that [L : Q] ≥ n. On the other hand, the elements in O have
degree at most n, hence [L : Q] ≤ n, so there is equality.

To summarize, we proved that L/Q must be a totally real extension of degree n, and O is an
order in L. Next we want to show that x = aL̂M for some full module in L (and actually O = OM ).

As before, the map a 7→ a1,1 is injective (its domain is a �eld), so we can identify L with its
restriction to the top left elements. Let a ∈ O be of degree n (namely a1,1 is of degree n) so that
and write ag = gγa with 0 6= γa ∈ Mn (Z). Since γa − a1,1I is singular, we can �nd a vector
v = (α1, ..., αn) ∈ Q (a1,1)

n
= Ln such that a1,1v = vγa. If σi : L → R are the distinct real

embeddings of L, then σi (a1,1)σi (v) = σi (v) γa where all the σi (a1,1) are distinct. It follows that
(up to permutation of indices) we must have that ai,i = σi (a1,1) and the rows of g are riσi (v)
where ri ∈ R× (since γa has n distinct eigenvalues and each eigenspace is one dimensional). In
particular, if M = spanZ {α1, ..., αn} is the full module in L, then gZn = diag (r1, ..., rn)LM , hence
Ax = AL̂M .
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