-
Recent Posts
Tags
- Borsuk-Ulam
- Cayley-Hamilton Theorem
- characters
- Chinese remainder theorem
- Compression
- Diophantine approximation
- Dirichlet's theorem
- Dirichlet's approximation theorem
- Dirichlet's unit theorem
- Domino
- Dynamics
- eigenvalues
- Entropy
- Euclid
- Fourier transform
- gaussian integers
- Generic Matrix
- Geometry
- Geometry of numbers
- Ham sandwich
- Homogeneous spaces
- Hyperbolic space
- intermediate value theorem
- isoperimetric inequality
- Klein group
- lattice
- Lattices
- Linearity testing
- mediant
- Minkowski's Theorem
- mobius
- Number Theory
- Peg Solitaire
- Pell's equations
- planar geometry
- poinare disk
- prime numbers
- Pythagoras
- radar
- random walk
- self similar sets
- shortest vector problem
- Sierpinski carpet
- Sierpinski triangle
- SL_2(Z)
- stochastic matrices
- Weak Law of Large Numbers
Archives
-
Monthly Archives: May 2021
Counting primes in arithmetic progressions
We have now seen in the previous two posts a few results about prime numbers. In the first one, we saw why primes are so important and used Euclid’s proof to show that there are infinitely many primes. Moreover, we … Continue reading
Summing the prime reciprocals
In the previous post we saw why primes are so important, and used Euclid’s proof to show that there are infinitely many primes. We further conjectured that not only there are infinitely many primes, they are also “nicely” distributed among … Continue reading
Posted in Uncategorized
Leave a comment
How many primes are there?
The prime numbers are one of those basic, yet mysterious, sets in mathematics, that while we know much about them, there are still many interesting open questions waiting to be answered, including probably the most well known conjecture in mathematics … Continue reading