
Recent Posts
Tags
 CayleyHamilton Theorem
 characters
 Chinese remainder theorem
 Compression
 Diophantine approximation
 Dirichlet's theorem
 Dirichlet's approximation theorem
 Dirichlet's unit theorem
 Domino
 Dynamics
 eigenvalues
 Entropy
 Euclid
 Fourier transform
 gaussian integers
 Generic Matrix
 Geometry
 Geometry of numbers
 Homogeneous spaces
 Hyperbolic space
 Klein group
 lattice
 Lattices
 Linearity testing
 mediant
 Minkowski's Theorem
 mobius
 Number Theory
 Peg Solitaire
 Pell's equations
 poinare disk
 prime numbers
 Pythagoras
 radar
 random walk
 self similar sets
 shortest vector problem
 Sierpinski carpet
 Sierpinski triangle
 SL_2(Z)
 stochastic matrices
 Weak Law of Large Numbers
Archives
Monthly Archives: January 2017
Minkowski’s theorem
In the post about Diophantine approximation, we saw that in order to find “good” rational approximations to a real number, it is enough to prove that given a lattice and a “big enough” box around the origin, the box must … Continue reading
From number theory to geometry of lattices
Number theory can mean a lot of thing to a lot of people. This is a very big part of mathematics, and it contains many areas starting with the elementary number theory (“simple” congruence like arguments), algebraic number theory (e.g. … Continue reading