
Recent Posts
Tags
 CayleyHamilton Theorem
 characters
 Chinese remainder theorem
 Compression
 Diophantine approximation
 Dirichlet's theorem
 Dirichlet's approximation theorem
 Dirichlet's unit theorem
 Domino
 Dynamics
 eigenvalues
 Entropy
 Euclid
 Fourier transform
 gaussian integers
 Generic Matrix
 Geometry
 Geometry of numbers
 Homogeneous spaces
 Hyperbolic space
 Klein group
 lattice
 Lattices
 Linearity testing
 mediant
 Minkowski's Theorem
 mobius
 Number Theory
 Peg Solitaire
 Pell's equations
 poinare disk
 prime numbers
 Pythagoras
 radar
 random walk
 self similar sets
 shortest vector problem
 Sierpinski carpet
 Sierpinski triangle
 SL_2(Z)
 stochastic matrices
 Weak Law of Large Numbers
Archives
Tag Archives: Generic Matrix
The generic matrix and the Cayleyâ€“Hamilton theorem
Sometime during the first course in linear algebra we all learn the famous CayleyHamilton theorem which states the following: Theorem: Let be an matrix over a field , and denote by its characteristic polynomial. Then . The “easy” proof for … Continue reading